Swarm-Based Metaheuristic Algorithms and No-Free-Lunch Theorems
نویسنده
چکیده
Metaheuristic algorithms, especially those based on swarm intelligence (SI), form an important part of contemporary global optimization algorithms (Kennedy and Ebarhart, 1995; Yang, 2008; Auger and Teytaud, 2010; Auger and Doerr, 2010; Blum and Roli, 2003; Neumann and Witt 2010; Parpinelli and Lopes, 2011). Good examples are particle swarm optimization (PSO) (Kennedy and Eberhart, 1995) and firefly algorithm (FA) (Yang, 2009). They work remarkably efficiently and have many advantages over traditional, deterministic methods and algorithms, and thus they have been applied in almost all area of science, engineering and industry (Floudas and Pardolos, 2009; Yang 2010a, Yang, 2010b; Yu et al., 2005).
منابع مشابه
No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics
The No Free Lunch (NFL) theorems for search and optimization are reviewed and their implications for the design of metaheuristics are discussed. The theorems state that any two search or optimization algorithms are equivalent when their performance is averaged across all possible problems and even over subsets of problems fulfilling certain constraints. The NFL results show that if there is no ...
متن کاملArbitrary function optimisation with metaheuristics - No free lunch and real-world problems
No free lunch theorems for optimisation suggest that empirical studies on benchmarking problems are pointless, or even cast negative doubts, when algorithms are being applied to other problems not clearly related to the previous ones. Roughly speaking, reported empirical results are not just the result of algorithms’ performances, but the benchmark used therein as well; and consequently, recomm...
متن کاملThe No Free Lunch Theorem Disproved by Counterexample: A Justification for Regrouing
After deriving the particle swarm equations from basic physics, this paper shows by contradiction that NFL Theorem 1, and consequently Theorems 2 and 3, are irrelevant to continuous optimization. As the discrete nature of matter at its most fundamental level is generally irrelevant from the broader classical perspective, so to is the discrete nature of an optimization problem at its most fundam...
متن کاملThe No Free Lunch Theorems for Optimisation: An Overview
Many algorithms have been devised for tackling combinatorial optimisation problems (COPs). Traditional Operations Research (OR) techniques such as Branch and Bound and Cutting Planes Algorithms can, given enough time, guarantee an optimal solution as they explicitly exploit features of the optimisation function they are solving. Specialised heuristics exist for most COPs that also exploit featu...
متن کاملNo-Free-Lunch theorems in the continuum
No-Free-Lunch Theorems state, roughly speaking, that the performance of all search algorithms is the same when averaged over all possible objective functions. This fact was precisely formulated for the first time in a now famous paper by Wolpert and Macready, and then subsequently refined and extended by several authors, always in the context of a set of functions with discrete domain and codom...
متن کامل